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4

Lists, Stacks, and Queues

If your program needs to store a few things — numbers, payroll records, or job
descriptions for example — the simplest and most effective approach might be to
put them in a list. Only when you have to organize or search through a large number
of things do more sophisticated data structures usually become necessary. (We will
study how to organize and search through medium amounts of data in Chapters 5,
7, and 9, and discuss how to deal with large amounts of data in Chapters 8–10.)
Many applications don’t require any form of search, and they do not require that
any ordering be placed on the objects being stored. Some applications require
processing in a strict chronological order, perhaps processing objects in the order
that they arrived, or perhaps processing objects in the reverse of the order that they
arrived. For all these situations, a simple list structure is appropriate.

This chapter describes representations for lists in general, as well as two impor-
tant list-like structures called the stack and the queue. Along with presenting these
fundamental data structures, the other goals of the chapter are to: (1) Give examples
of separating a logical representation in the form of an ADT from a physical im-
plementation for a data structure. (2) Illustrate the use of asymptotic analysis in the
context of some simple operations that you might already be familiar with. In this
way you can begin to see how asymptotic analysis works, without the complica-
tions that arise when analyzing more sophisticated algorithms and data structures.
(3) Introduce the concept and use of dictionaries and comparator classes.

We begin by defining an ADT for lists in Section 4.1. Two implementations for
the list ADT — the array-based list and the linked list — are covered in detail and
their relative merits discussed. Sections 4.2 and 4.3 cover stacks and queues, re-
spectively. Sample implementations for each of these data structures are presented.
Section 4.4 presents the Dictionary ADT for storing and retrieving data, which sets
a context for implementing search structures such as the Binary Search Tree of
Section 5.4.
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100 Chap. 4 Lists, Stacks, and Queues

4.1 Lists

We all have an intuitive understanding of what we mean by a “list,” so our first
step is to define precisely what is meant so that this intuitive understanding can
eventually be converted into a concrete data structure and its operations. Perhaps
the most important concept related to lists is that of position. In other words, we
perceive that there is a first element in the list, a second element, and so on. Thus,
we should view a list as embodying the mathematical concepts of a sequence, as
defined in Section 2.1.

We define a list to be a finite, ordered sequence of data items known as ele-
ments. “Ordered” in this definition means that each element has a position in the
list. (We will not use “ordered” in this context to mean that the list is sorted.) Each
list element has a data type. In the simple list implementations discussed in this
chapter, all elements of the list have the same data type, although there is no con-
ceptual objection to lists whose elements have differing data types if the application
requires it (see Section 12.1). The operations defined as part of the list ADT do not
depend on the elemental data type. For example, the list ADT can be used for lists
of integers, lists of characters, lists of payroll records, even lists of lists.

A list is said to be empty when it contains no elements. The number of ele-
ments currently stored is called the length of the list. The beginning of the list is
called the head, the end of the list is called the tail. There might or might not be
some relationship between the value of an element and its position in the list. For
example, sorted lists have their elements positioned in ascending order of value,
while unsorted lists have no particular relationship between element values and
positions. This section will consider only unsorted lists. Chapters 7 and 9 treat the
problems of how to create and search sorted lists efficiently.

When presenting the contents of a list, we use the same notation as was in-
troduced for sequences in Section 2.1. To be consistent with Java array indexing,
the first position on the list is denoted as 0. Thus, if there are n elements in the
list, they are given positions 0 through n− 1 as 〈a0, a1, ..., an−1〉. The subscript
indicates an element’s position within the list. Using this notation, the empty list
would appear as 〈〉.

Before selecting a list implementation, a program designer should first consider
what basic operations the implementation must support. Our common intuition
about lists tells us that a list should be able to grow and shrink in size as we insert
and remove elements. We should be able to insert and remove elements from any-
where in the list. We should be able to gain access to any element’s value, either to
read it or to change it. We must be able to create and clear (or reinitialize) lists. It
is also convenient to access the next or previous element from the “current” one.
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The next step is to define the ADT for a list object in terms of a set of operations
on that object. We will use the Java notation of an interface to formally define the
list ADT. Interface List defines the member functions that any list implementation
inheriting from it must support, along with their parameters and return types. We
increase the flexibility of the list ADT by writing it as a Java generic.

True to the notion of an ADT, an interface does not specify how operations
are implemented. Two complete implementations are presented later in this sec-
tion, both of which use the same list ADT to define their operations, but they are
considerably different in approaches and in their space/time tradeoffs.

Figure 4.1 presents our list ADT. Class List is a generic with one type pa-
rameter, named E. E serves as a placeholder for whatever element type the user
would like to store in a list. The comments given in Figure 4.1 describe precisely
what each member function is intended to do. However, some explanation of the
basic design is in order. Given that we wish to support the concept of a sequence,
with access to any position in the list, the need for many of the member functions
such as insert and moveToPos is clear. The key design decision embodied in
this ADT is support for the concept of a current position. For example, member
moveToStart sets the current position to be the first element on the list, while
methods next and prev move the current position to the next and previous ele-
ments, respectively. The intention is that any implementation for this ADT support
the concept of a current position. The current position is where any action such as
insertion or deletion will take place.

Since insertions take place at the current position, and since we want to be able
to insert to the front or the back of the list as well as anywhere in between, there
are actuall n+ 1 possible “current positions” when there are n elements in the list.

It is helpful to modify our list display notation to show the position of the
current element. I will use a vertical bar, such as 〈20, 23 | 12, 15〉 to indicate
the list of four elements, with the current position being to the right of the bar at
element 12. Given this configuration, calling insert with value 10 will change
the list to be 〈20, 23 | 10, 12, 15〉.

If you examine Figure 4.1, you should find that the list member functions pro-
vided allow you to build a list with elements in any desired order, and to access any
desired position in the list. You might have noticed that the clear method is not
necessary, in that it could be implemented by means of the other member functions
in the same asymptotic time. It is included merely for convenience.

Method getValue returns a reference to the current element. If there is no
current value, then null is returned.

A list can be iterated through as shown in this following code fragment.
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/** List ADT */
public interface List<E> {

/** Remove all contents from the list, so it is once again
empty. Client is responsible for reclaiming storage
used by the list elements. */

public void clear();

/** Insert an element at the current location. The client
is responsible for ensuring that the list’s capacity
is not exceeded.
@param item The element to be inserted. */

public void insert(E item);

/** Append an element at the end of the list. The client
is responsible for ensuring that the list’s capacity
is not exceeded.
@param item The element to be appended. */

public void append(E item);

/** Remove and return the current element.
@return The element that was removed. */

public E remove();

/** Set the current position to the start of the list */
public void moveToStart();

/** Set the current position to the end of the list */
public void moveToEnd();

/** Move the current position one step left. No change
if already at beginning. */

public void prev();

/** Move the current position one step right. No change
if already at end. */

public void next();

/** @return The number of elements in the list. */
public int length();

/** @return The position of the current element. */
public int currPos();

/** Set current position.
@param pos The position to make current. */

public void moveToPos(int pos);

/** @return The current element. */
public E getValue();

}

Figure 4.1 The Java interface for a list.
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for (L.moveToStart(); L.currPos()<L.length(); L.next()) {
it = L.getValue();
doSomething(it);

}

In this example, each element of the list in turn is stored in it, and passed to the
doSomething function. The loop terminates when the current position reaches
the end of the list.

The list class declaration presented here is just one of many possible interpreta-
tions for lists. Figure 4.1 provides most of the operations that one naturally expects
to perform on lists and serves to illustrate the issues relevant to implementing the
list data structure. As an example of using the list ADT, we can create a function
to return true if there is an occurrence of a given integer in the list, and false
otherwise. The find method needs no knowledge about the specific list imple-
mentation, just the list ADT.

/** @return True if "k" is in list "L", false otherwise */
public static boolean find(List<Integer> L, int k) {

int it;
for (L.moveToStart(); L.currPos()<L.length(); L.next()) {

it = L.getValue();
if (k == it) return true; // Found k

}
return false; // k not found

}

While this implementation for find could be written as a generic with re-
spect to the element type, it would still be limited in its ability to handle different
data types stored on the list. In particular, it only works when the description for the
object being searched for (k in the function) is of the same type as the objects them-
selves. A more typical situation is that we are searching for a record that contains a
key field who’s value matches k. Similar functions to find and return a composite
element based on a key value can be created using the list implementation, but to
do so requires some agreement between the list ADT and the find function on the
concept of a key. This topic will be discussed in Section 4.4.

4.1.1 Array-Based List Implementation

There are two standard approaches to implementing lists, the array-based list, and
the linked list. This section discusses the array-based approach. The linked list is
presented in Section 4.1.2. Time and space efficiency comparisons for the two are
discussed in Section 4.1.3.
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/** Array-based list implementation */
class AList<E> implements List<E> {

private static final int defaultSize = 10; // Default size

private int maxSize; // Maximum size of list
private int listSize; // Number of list items now
private int curr; // Position current element
private E[] listArray; // Array holding list elements

/** Constructors */
/** Create a list with the default capacity. */
AList() { this(defaultSize); }
/** Create a new list object.

@param size Max number of elements list can contain. */
@SuppressWarnings("unchecked") // Generic array allocation
AList(int size) {

maxSize = size;
listSize = curr = 0;
listArray = (E[])new Object[size]; // Create listArray

}

public void clear() // Reinitialize the list
{ listSize = curr = 0; } // Simply reinitialize values

/** Insert "it" at current position */
public void insert(E it) {

assert listSize < maxSize : "List capacity exceeded";
for (int i=listSize; i>curr; i--) // Shift elements up

listArray[i] = listArray[i-1]; // to make room
listArray[curr] = it;
listSize++; // Increment list size

}

public void append(E it) { // Append "it"
assert listSize < maxSize : "List capacity exceeded";
listArray[listSize++] = it;

}

public void moveToStart() { curr = 0; } // Reset position

Figure 4.2 An array-based list implementation.

Figure 4.2 shows the array-based list implementation, named AList. AList
inherits from abstract class List and so must implement all of the member func-
tions of List.
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// Remove and return the current element.
public E remove() {

if ((curr<0) || (curr>=listSize)) // No current element
return null;

E it = listArray[curr]; // Copy the element
for(int i=curr; i<listSize-1; i++) // Shift them down

listArray[i] = listArray[i+1];
listSize--; // Decrement size
return it;

}

public void moveToEnd() { curr = listSize; } // Reset
public void prev() { if (curr != 0) curr--; } // Back up
public void next() { if (curr < listSize) curr++; } // Next

// Return list size
public int length() { return listSize; }

public int currPos() { // Return current position
return curr;

}

// Set current list position to "pos"
public void moveToPos(int pos) {

assert (pos>=0) && (pos<=listSize) : "Pos out of range";
curr = pos;

}

public E getValue() { // Return current element
assert (curr>=0)&&(curr<listSize) : "No current element";
return listArray[curr];

}

Figure 4.2 (continued)

Class AList’s private portion contains the data members for the array-based
list. These include listArray, the array which holds the list elements. Because
listArray must be allocated at some fixed size, the size of the array must be
known when the list object is created. Note that an optional parameter is declared
for the AList constructor. With this parameter, the user can indicate the maximum
number of elements permitted in the list. If no parameter is given, then it takes the
value DefaultListSize, which is assumed to be a suitably defined constant
value.

Because each list can have a differently sized array, each list must remember
its maximum permitted size. Data member maxSize serves this purpose. At any
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given time the list actually holds some number of elements that can be less than the
maximum allowed by the array. This value is stored in listSize. Data member
curr stores the current position. Because listArray, maxSize, listSize,
and curr are all declared to be private, they may only be accessed by methods
of Class AList.

Class AList stores the list elements in contiguous array positions. Array po-
sitions correspond to list positions. In other words, the element at position i in the
list is stored at array cell i. The head of the list is always at position 0. This makes
random access to any element in the list quite easy. Given some position in the list,
the value of the element in that position can be accessed directly. Thus, access to
any element using the moveToPos method followed by the getValue method
takes Θ(1) time.

Because the array-based list implementation is defined to store list elements
in contiguous cells of the array, the insert, append, and remove methods
must maintain this property. Inserting or removing elements at the tail of the list
is easy, and the append operation takes Θ(1) time. However, if we wish to insert
an element at the head of the list, all elements currently in the list must shift one
position toward the tail to make room, as illustrated by Figure 4.3. This process
takes Θ(n) time if there are n elements already in the list. If we wish to insert at
position i within a list of n elements, then n − i elements must shift toward the
tail. Removing an element from the head of the list is similar in that all remaining
elements in the array must shift toward the head by one position to fill in the gap. To
remove the element at position i, n− i− 1 elements must shift toward the head. In
the average case, insertion or removal requires moving half of the elements, which
is Θ(n).

Most of the other member functions for Class AList simply access the current
list element or move the current position. Such operations all require Θ(1) time.
Aside from insert and remove, the only other operations that might require
more than constant time are the constructor, the destructor, and clear. These
three member functions each make use of the system free-store operation new. As
discussed further in Section 4.1.2, system free-store operations can be expensive.

4.1.2 Linked Lists

The second traditional approach to implementing lists makes use of pointers and is
usually called a linked list. The linked list uses dynamic memory allocation, that
is, it allocates memory for new list elements as needed.

A linked list is made up of a series of objects, called the nodes of the list.
Because a list node is a distinct object (as opposed to simply a cell in an array), it is
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Insert 23:
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Figure 4.3 Inserting an element at the head of an array-based list requires shift-
ing all existing elements in the array by one position toward the tail. (a) A list
containing five elements before inserting an element with value 23. (b) The list
after shifting all existing elements one position to the right. (c) The list after 23
has been inserted in array position 0. Shading indicates the unused part of the
array.

good practice to make a separate list node class. An additional benefit to creating a
list node class is that it can be reused by the linked implementations for the stack
and queue data structures presented later in this chapter. Figure 4.4 shows the
implementation for list nodes, called the Link class. Objects in the Link class
contain an element field to store the element value, and a next field to store a
pointer to the next node on the list. The list built from such nodes is called a singly
linked list, or a one-way list, because each list node has a single pointer to the next
node on the list.

The Link class is quite simple. There are two forms for its constructor, one
with an initial element value and one without. Because the Link class is also
used by the stack and queue implementations presented later, its data members are
made public. While technically this is breaking encapsulation, in practice the Link
class should be implemented as a private class of the linked list (or stack or queue)
implementation, and thus not visible to the rest of the program.

Figure 4.5(a) shows a graphical depiction for a linked list storing four integers.
The value stored in a pointer variable is indicated by an arrow “pointing” to some-
thing. Java uses the special symbol null for a pointer value that points nowhere,
such as for the last list node’s next field. A null pointer is indicated graphically
by a diagonal slash through a pointer variable’s box. The vertical line between the
nodes labeled 23 and 12 in Figure 4.5(a) indicates the current position.

The first link node of the list is accessed from a pointer named head. To
speed access to the end of the list, in particular to allow the append method to
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class Link<E> { // Singly linked list node
private E element; // Value for this node
private Link<E> next; // Pointer to next node in list

// Constructors
Link(E it, Link<E> nextval)

{ element = it; next = nextval; }
Link(Link<E> nextval) { next = nextval; }

Link<E> next() { return next; }
Link<E> setNext(Link<E> nextval)

{ return next = nextval; }
E element() { return element; }
E setElement(E it) { return element = it; }

} // class Link

Figure 4.4 A simple singly linked list node implementation.

tailhead
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curr

curr

Figure 4.5 Illustration of a faulty linked-list implementation where curr points
directly to the current node. (a) Linked list prior to inserting element with
value 10. (b) Desired effect of inserting element with value 10.

be performed in constant time, a pointer named tail is also kept to the last link
of the list. The position of the current element is indicated by another pointer,
named curr. Finally, because there is no simple way to compute the length of the
list simply from these three pointers, the list length must be stored explicitly, and
updated by every operation that modifies the list size. The value cnt stores the
length of the list.

Note that LList’s constructor maintains the optional parameter for minimum
list size introduced for Class AList. This is done simply to keep the calls to the
constructor the same for both variants. Because the linked list class does not need
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to declare a fixed-size array when the list is created, this parameter is unnecessary
for linked lists. It is ignored by the implementation.

A key design decision for the linked list implementation is how to represent
the current position. The most reasonable choices appear to be a pointer to the
current element. But there is a big advantage to making curr point to the element
preceding the current element.

Figure 4.5(a) shows the list’s curr pointer pointing to the current element. The
vertical line between the nodes containing 23 and 12 indicates the logical position
of the current element. Consider what happens if we wish to insert a new node with
value 10 into the list. The result should be as shown in Figure 4.5(b). However,
there is a problem. To “splice” the list node containing the new element into the
list, the list node storing 23 must have its next pointer changed to point to the new
node. Unfortunately, there is no convenient access to the node preceding the one
pointed to by curr. However, if curr points directlyto the preceding element,
there is no difficulty in adding a new element after curr. See Exercise 4.5 for
further discussion of why making curr point directly to the current element fails.

Unfortunately, we encounter a number of problems when the list is empty, or
when the current position is at an end of the list. In particular, when the list is
empty we have no element for head, tail, and curr to point to. One solution
is to implement a number of special cases in the implementations for insert and
remove. This increases code complexity, making it harder to understand, and thus
increases the chance of introducing a programming bug.

These special cases can be eliminated by implementing linked lists with a spe-
cial header node as the first node of the list. This header node is a link node like
any other, but its value is ignored and it is not considered to be an actual element of
the list. The header node saves coding effort because we no longer need to consider
special cases for empty lists or when the current position is at one end of the list.
The cost of this simplification is the space for the header node. However, there
are space savings due to smaller code size, because statements to handle the special
cases are omitted. In practice, this reduction in code size typically saves more space
than that required for the header node, depending on the number of lists created.
Figure 4.6 shows the state of an initialized or empty list when using a header node.
Figure 4.7 shows the insertion example of Figure 4.5 using a header node and the
convention that curr points to the node preceding the current node.

Figure 4.8 shows the definition for the linked list class, named LList. Class
LList inherits from the abstract list class and thus must implement all of Class
List’s member functions.
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tail
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Figure 4.6 Initial state of a linked list when using a header node.
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15
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Figure 4.7 Insertion using a header node, with curr pointing one node head of
the current element. (a) Linked list before insertion. The current node contains
12. (b) Linked list after inserting the node containing 10.

Implementation for most member functions of the list class is straightfor-
ward. However, insert and remove should be studied carefully.

Inserting a new element is a three-step process. First, the new list node is
created and the new element is stored into it. Second, the next field of the new
list node is assigned to point to the current node (the one (after) the node that curr
points to). Third, the next field of node pointed to by curr is assigned to point to
the newly inserted node. The following line in the insert method of Figure 4.8
actually does all three of these steps.

curr.setNext(new Link<E>(it, curr.next()));

Operator new creates the new link node and calls the constructor for the Link
class, which takes two parameters. The first is the element. The second is the
value to be placed in the list node’s next field, in this case “curr.next().”
Figure 4.9 illustrates this three-step process. Once the new node is added, tail
is pushed forward if the new element was added to the end of the list. Insertion
requires Θ(1) time.

Removing a node from the linked list requires only that the appropriate pointer
be redirected around the node to be deleted. This memory eventually be reclaimed
by the garbage collector. The following lines from the remove method of Fig-
ure 4.8 do precisely this.
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// Linked list implementation
class LList<E> implements List<E> {
private Link<E> head; // Pointer to list header
private Link<E> tail; // Pointer to last element
protected Link<E> curr; // Access to current element
int cnt; // Size of list

//Constructors
LList(int size) { this(); } // Constructor -- Ignore size
LList() {

curr = tail = head = new Link<E>(null); // Create header
cnt = 0;

}

public void clear() { // Remove all elements
head.setNext(null); // Drop access to links
curr = tail = head = new Link<E>(null); // Create header
cnt = 0;

}

// Insert "it" at current position
public void insert(E it) {

curr.setNext(new Link<E>(it, curr.next()));
if (tail == curr) tail = curr.next(); // New tail
cnt++;

}

public void append(E it) { // Append "it" to list
tail = tail.setNext(new Link<E>(it, null));
cnt++;

}

public void moveToStart() // Set curr at list start
{ curr = head; }

// Remove and return current element
public E remove() {

if (curr.next() == null) return null; // Nothing to remove
E it = curr.next().element(); // Remember value
if (tail == curr.next()) tail = curr; // Removed last
curr.setNext(curr.next().next()); // Remove from list
cnt--; // Decrement count
return it; // Return value

}

Figure 4.8 A linked list implementation.
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public void moveToEnd() // Set curr at list end
{ curr = tail; }

// Move curr one step left; no change if already at front
public void prev() {

if (curr == head) return; // No previous element
Link<E> temp = head;
// March down list until we find the previous element
while (temp.next() != curr) temp = temp.next();
curr = temp;

}

// Move curr one step right; no change if already at end
public void next() {

if (curr != tail)
{ curr = curr.next(); }

}

public int length() { return cnt; }

// Return the position of the current element
public int currPos() {

Link<E> temp = head;
int i;
for (i=0; curr != temp; i++)

temp = temp.next();
return i;

}

// Move down list to "pos" position
public void moveToPos(int pos) {

assert (pos>=0) && (pos<=cnt) : "Position out of range";
curr = head;
for(int i=0; i<pos; i++) curr = curr.next();

}

public E getValue() { // Return current element
if(curr.next() == null) return null;
return curr.next().element();

}

Figure 4.8 (continued)
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Figure 4.9 The linked list insertion process. (a) The linked list before insertion.
(b) The linked list after insertion. 1 marks the element field of the new link
node. 2 marks the next field of the new link node, which is set to point to what
used to be the current node (the node with value 12). 3 marks the next field of
the node preceding the current position. It used to point to the node containing 12;
now it points to the new node containing 10.

E it = curr.next().element(); // Remember value
curr.setNext(curr.next().next()); // Remove from list

Figure 4.10 illustrates the remove method. Removing an element requires Θ(1)
time.

Method next simply moves curr one position toward the tail of the list,
which takes Θ(1) time. Method prev moves curr one position toward the head
of the list, but its implementation is more difficult. In a singly linked list, there is
no pointer to the previous node. Thus, the only alternative is to march down the list
from the beginning until we reach the current node (being sure always to remember
the node before it, because that is what we really want). This takes Θ(n) time in
the average and worst cases. Implementation of method moveToPos is similar in
that finding the ith position requires marching down i positions from the head of
the list, taking Θ(i) time.

Implementations for the remaining operations are straightforward, each requir-
ing Θ(1) time.
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Figure 4.10 The linked list removal process. (a) The linked list before removing
the node with value 10. (b) The linked list after removal. 1 marks the list node
being removed. it is set to point to the element. 2 marks the next field of
the preceding list node, which is set to point to the node following the one being
deleted.

Freelists

The new operator is relatively expensive to use. Section 12.3 discusses how a
general-purpose memory manager can be implemented. The problem is that free-
store routines must be capable of handling requests to and from free store with no
particular pattern, as well as requests of vastly different sizes. Garbage collection
is also expensive.

Most compilers today provide reasonable implementations for their free-store
operators. However, the requirement that free-store managers be able to handle any
pattern of new operations, combined with unpredictable freeing of space by the
garbage collector, makes them inefficient compared to what might be implemented
for more controlled patterns of memory access.

The conditions under which list nodes are created and deleted in a linked list
implementation allow the Link class programmer to provide simple but efficient
memory management routines in place of the system-level free-store operators.
Instead of making repeated calls to new, the Link class can handle its own freelist.
A freelist holds those list nodes that are not currently being used. When a node is
deleted from a linked list, it is placed at the head of the freelist. When a new
element is to be added to a linked list, the freelist is checked to see if a list node
is available. If so, the node is taken from the freelist. If the freelist is empty, the
standard new operator must then be called.
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Freelists are particularly useful for linked lists that periodically grow and then
shrink. The freelist will never grow larger than the largest size yet reached by the
linked list. Requests for new nodes (after the list has shrunk) can be handled by the
freelist.

One approach to implementing freelists would be to create two new methods to
handle requesting and freeing nodes. This requires that the user’s code, such as the
linked list class implementation of Figure 4.8, be modified to call these freelist op-
erators. In the implementation shown here, the link class is augmented with meth-
ods get and release. Figure 4.11 shows the reimplementation for the Link
class to support these methods. Note how simple they are, because they need only
remove and add an element to the front of the freelist, respectively.

The freelist methods get and release both run in Θ(1) time, except in the
case where the freelist is exhausted and the new operator must be called.

In Figure 4.11, you should note the use of the static definition for the freelist
header. The purpose of the keyword static is to create a single variable shared
among all instances of the Link nodes. We want only a single freelist for all Link
nodes of a given type. A program might create multiple lists. If they are all of the
same type (that is, their element types are the same), then they can and should share
the same freelist. This will happen with the implementation of Figure 4.11. If lists
are created that have different element types, because this code is implemented
with templates, the need for different list implementations will be discovered by
the compiler at compile time. Separate versions of the list class will be generated
for each element type. Thus, each element type will also get its own separate copy
of the Link class. And each distinct Link class implementation will get a separate
freelist.

Let’s consider a more complex situation where we want separate freelists, but
we don’t know this until runtime. For example, perhaps we are using lists to store
variable-length strings. A given node gets space allocated for a string of a specific
length. We’d like to be able to reuse the nodes by placing them on a freelist, instead
of relying on the system free store operators. But we cannot reuse a given list node
unless the size allocated for its string matches the length of the string we want to
store in this node. Thus, each specific node size must be stored on its own freelist.
That is, the nodes for strings of length one are stored on one freelist, the nodes for
strings of length two on another freelist, and so on. In this way, its easy to find a
node of the proper size.

Unfortunately, we don’t know in advance what the various sizes of strings will
be. If we want to support long strings, then there could be thousands of different
node sizes, many of which are not used in any particular run of the program. Thus,
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// Singly linked list node with freelist support
class Link<E> {

private E element; // Value for this node
private Link<E> next; // Point to next node in list

// Constructors
Link(E it, Link<E> nextval)

{ element = it; next = nextval; }
Link(Link<E> nextval) { next = nextval; }

Link<E> next() { return next; }
Link<E> setNext(Link<E> nextval)

{ return next = nextval; }
E element() { return element; }
E setElement(E it) { return element = it; }

// Extensions to support freelists
static Link freelist = null; // Freelist for the class

// Get new link
static <E> Link<E> get(E it, Link<E> nextval) {

if (freelist == null)
return new Link<E>(it, nextval); // Get from "new"

Link<E> temp = freelist; // Get from freelist
freelist = freelist.next();
temp.setElement(it);
temp.setNext(nextval);
return temp;

}

void release() { // Return Link to freelist
element = null; // Drop reference to the element
next = freelist;
freelist = this;

}
} // class Link

Figure 4.11 Implementation for the Link class with a freelist. The static
declaration for member freelist means that all Link class objects share the
same freelist pointer variable instead of each object storing its own copy.
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we do not want to allocate freelists in advance for each potential node length. On
the other hand, we need to make sure no more than one copy of the freelist for a
given size is created.

We can modify our freelist free-store methods to request the appropriate freel-
ist. This access function will search for the proper freelist. If it exists, that freelist
is used. If not, that freelist is created.

4.1.3 Comparison of List Implementations

Now that you have seen two substantially different implementations for lists, it is
natural to ask which is better. In particular, if you must implement a list for some
task, which implementation should you choose?

Array-based lists have the disadvantage that their size must be predetermined
before the array can be allocated. Array-based lists cannot grow beyond their pre-
determined size. Whenever the list contains only a few elements, a substantial
amount of space might be tied up in a largely empty array. Linked lists have the
advantage that they only need space for the objects actually on the list. There is
no limit to the number of elements on a linked list, as long as there is free-store
memory available. The amount of space required by a linked list is Θ(n), while the
space required by the array-based list implementation is Ω(n), but can be greater.

Array-based lists have the advantage that there is no wasted space for an indi-
vidual element. Linked lists require that a pointer be added to every list node. If
the element size is small, then the overhead for links can be a significant fraction of
the total storage. When the array for the array-based list is completely filled, there
is no storage overhead. The array-based list will then be more space efficient, by a
constant factor, than the linked implementation.

A simple formula can be used to determine whether the array-based list or
linked list implementation will be more space efficient in a particular situation.
Call n the number of elements currently in the list, P the size of a pointer in stor-
age units (typically four bytes), E the size of a data element in storage units (this
could be anything, from one bit for a Boolean variable on up to thousands of bytes
or more for complex records), and D the maximum number of list elements that
can be stored in the array. The amount of space required for the array-based list is
DE, regardless of the number of elements actually stored in the list at any given
time. The amount of space required for the linked list is n(P + E). The smaller
of these expressions for a given value n determines the more space-efficient imple-
mentation for n elements. In general, the linked implementation requires less space
than the array-based implementation when relatively few elements are in the list.
Conversely, the array-based implementation becomes more space efficient when
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the array is close to full. Using the equation, we can solve for n to determine
the break-even point beyond which the array-based implementation is more space
efficient in any particular situation. This occurs when

n > DE/(P + E).

If P = E, then the break-even point is at D/2. This would happen if the element
field is either a four-byte int value or a pointer, and the next field is a typical four-
byte pointer. That is, the array-based implementation would be more efficient (if
the link field and the element field are the same size) whenever the array is more
than half full.

As a rule of thumb, linked lists are better when implementing lists whose num-
ber of elements varies widely or is unknown. Array-based lists are generally more
space efficient when the user knows in advance approximately how large the list
will become.

Array-based lists are faster for random access by position. Positions can easily
be adjusted forwards or backwards by the next and prev methods. These opera-
tions always take Θ(1) time. In contrast, singly linked lists have no explicit access
to the previous element, and access by position requires that we march down the
list from the front (or the current position) to the specified position. Both of these
operations require Θ(n) time in the average and worst cases, if we assume that
each position on the list is equally likely to be accessed on any call to prev or
movetoPos.

Given a pointer to a suitable location in the list, the insert and remove
methods for linked lists require only Θ(1) time. Array-based lists must shift the re-
mainder of the list up or down within the array. This requires Θ(n) time in the aver-
age and worst cases. For many applications, the time to insert and delete elements
dominates all other operations. For this reason, linked lists are often preferred to
array-based lists.

When implementing the array-based list, an implementor could allow the size
of the array to grow and shrink depending on the number of elements that are ac-
tually stored. This data structure is known as a dynamic array. For example, the
Java Vector class implements a dynamic array. Dynamic arrays allow the pro-
grammer to get around the limitation on the standard array that its size cannot be
changed once the array has been created. This also means that space need not be
allocated to the dynamic array until it is to be used. The disadvantage of this ap-
proach is that it takes time to deal with space adjustments on the array. Each time
the array grows in size, its contents must be copied. A good implementation of the
dynamic array will grow and shrink the array in such a way as to keep the overall
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cost for a series of insert/delete operations relatively inexpensive, even though an
occasional insert/delete operation might be expensive. To analyze the cost of dy-
namic array operations, we need to use a technique known as amortized analysis,
which is discussed in Section 14.3.

4.1.4 Element Implementations

List users must decide whether they wish to store a copy of any given element on
each list that contains it. For small elements such as an integer, this makes sense.
If the elements are payroll records, it might be desirable for the list node to store a
pointer to the record rather than store a copy of the record itself. This change would
allow multiple list nodes (or other data structures) to point to the same record, rather
than make repeated copies of the record. Not only might this save space, but it also
means that a modification to an element’s value is automatically reflected at all
locations where it is referenced. The disadvantage of storing a pointer to each ele-
ment is that the pointer requires space of its own. If elements are never duplicated,
then this additional space adds unnecessary overhead. Java most naturally stores
references to objects, meaning that only a single copy of an object such as a payroll
record will be maintained, even if it is on multiple lists.

Whether it is more advantageous to use references to shared elements or sepa-
rate copies depends on the intended application. In general, the larger the elements
and the more they are duplicated, the more likely that references to shared elements
is the better approach.

A second issue faced by implementors of a list class (or any other data structure
that stores a collection of user-defined data elements) is whether the elements stored
are all required to be of the same type. This is known as homogeneity in a data
structure. In some applications, the user would like to define the class of the data
element that is stored on a given list, and then never permit objects of a different
class to be stored on that same list. In other applications, the user would like to
permit the objects stored on a single list to be of differing types.

For the list implementations presented in this section, the compiler requires that
all objects stored on the list be of the same type. Besides Java generics, there are
other techniques that implementors of a list class can use to ensure that the element
type for a given list remains fixed, while still permitting different lists to store
different element types. One approach is to store an object of the appropriate type
in the header node of the list (perhaps an object of the appropriate type is supplied
as a parameter to the list constructor), and then check that all insert operations on
that list use the same element type.
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head

20 23

curr

12 15

tail

Figure 4.12 A doubly linked list.

The third issue that users of the list implementations must face is primarily of
concern when programming in languages that do not support automatic garbage
collection. That is how to deal with the memory of the objects stored on the list
when the list is deleted or the clear method is called. The list destructor and
the clear method are problematic in that there is a potential that they will be
misused, thus causing a memory leak. Deleting listArray in the array-based
implementation, or deleting a link node in the linked list implementation, might
remove the only reference to an object, leaving its memory space inaccessible.
Unfortunately, there is no way for the list implementation to know whether a given
object is pointed to in another part of the program or not. Thus, the user of the list
must be responsible for deleting these objects when that is appropriate.

4.1.5 Doubly Linked Lists

The singly linked list presented in Section 4.1.2 allows for direct access from a
list node only to the next node in the list. A doubly linked list allows convenient
access from a list node to the next node and also to the preceding node on the list.
The doubly linked list node accomplishes this in the obvious way by storing two
pointers: one to the node following it (as in the singly linked list), and a second
pointer to the node preceding it. The most common reason to use a doubly linked
list is because it is easier to implement than a singly linked list. While the code for
the doubly linked implementation is a little longer than for the singly linked version,
it tends to be a bit more “obvious” in its intention, and so easier to implement and
debug. Figure 4.12 illustrates the doubly linked list concept.

Like our singly linked list implementation, the doubly linked list implementa-
tion makes use of a header node. We also add a tailer node to the end of the list.
The tailer is similar to the header, in that it is a node that contains no value, and it
always exists. When the doubly linked list is initialized, the header and tailer nodes
are created. Data member head points to the header node, and tail points to
the tailer node. The purpose of these nodes is to simplify the insert, append,
and remove methods by eliminating all need for special-case code when the list
is empty.

Whether a list implementation is doubly or singly linked should be hidden from
the List class user. Figure 4.13 shows the complete implementation for a Link
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class DLink<E> { // Doubly linked list node
private E element; // Value for this node
private DLink<E> next; // Pointer to next node in list
private DLink<E> prev; // Pointer to previous node

// Constructors
DLink(E it, DLink<E> n, DLink<E> p)
{ element = it; next = n; prev = p; }
DLink(DLink<E> n, DLink<E> p) { next = n; prev = p; }

DLink<E> next() { return next; }
DLink<E> setNext(DLink<E> nextval)

{ return next = nextval; }
DLink<E> prev() { return prev; }
DLink<E> setPrev(DLink<E> prevval)

{ return prev = prevval; }
E element() { return element; }
E setElement(E it) { return element = it; }

} // class DLink

Figure 4.13 Doubly linked list node implementation with a freelist.

class to be used with doubly linked lists. This code is a little longer than that for the
singly linked list node implementation. Not only do the doubly linked list nodes
have an extra data member, but the constructors are a little more intelligent. When
a new node is being added to a doubly linked list, the neighboring nodes in the list
must also point back to the newly added node. Thus, the constructors will check
to see if the next or prev fields are non-null. When they are, the node being
pointed to will have its appropriate link field modified to point back to the new node
being added to the list. This simplifies the doubly linked list insert method.

Figure 4.14 shows the implementation for the insert, append, remove,
and prev doubly linked list methods. The class declaration and the remaining
member functions for the doubly linked list class are nearly identical to those of
Figures 4.8.

The insert method is especially simple for our doubly linked list implemen-
tation, because most of the work is done by the node’s constructor. Figure 4.15
shows the list before and after insertion of a node with value 10. The following line
of code from Figure 4.14 does the actual work.

curr.setNext(new DLink<E>(it, curr.next(), curr));

The three parameters to the new operator allow the list node class constructor
to set the element, prev, and next fields, respectively, for the new link node.
The new operator returns a pointer to the newly created node. The node constructor
also updates the next field of the node that the new node’s prev field points to. It
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// Insert "it" at current position
public void insert(E it) {

curr.setNext(new DLink<E>(it, curr.next(), curr));
if (curr.next().next() != null)

curr.next().next().setPrev(curr.next());
if (tail == curr) tail = curr.next(); // New tail
cnt++;

}

public void append(E it) { // Append "it" to list
tail.setNext(new DLink<E>(it, null, tail));
tail = tail.next();
cnt++;

}

// Remove and return first element in right partition
public E remove() {

if (curr.next() == null) return null; // Nothing to remove
E it = curr.next().element(); // Remember value
if (curr.next().next() != null)

curr.next().next().setPrev(curr);
else tail = curr; // Removed last Object: set tail
curr.setNext(curr.next().next()); // Remove from list
cnt--; // Decrement the count
return it; // Return value removed

}

// Move curr one step left; no change if at front
public void prev() {

if (curr != head) curr = curr.prev();
}

Figure 4.14 Implementations for doubly linked list class insert, append,
remove, and prev methods.

then updates the prev field of the node that the new node’s next field points to.
The existance of the header and tailer nodes mean that there are no special cases to
be worried about when inserting into an empty list.

The List class append method from Figure 4.14 is also simple. Here is the
crucial line of code.

tail.setNext(new DLink<E>(it, null, tail));

Again, the Link class constructor sets the element, prev, and next fields
of the node when the new operator is executed, and it also sets the appropriate
pointers in the previous last node and the list tailer node.



Sec. 4.1 Lists 123

...1223

5

... 20

(a)

... 20

4
curr

Insert 10: 10

...23 12

1

10

3 2

(b)

curr

Figure 4.15 Insertion for doubly linked lists. The labels 1 , 2 , and 3 cor-
respond to assignments done by the linked list node constructor. 4 marks the
assignment to curr->next. 5 marks the assignment to the prev pointer of
the node following the newly inserted node.
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Figure 4.16 Doubly linked list removal. Pointer ltemp is set to point to the
current node. Then the nodes to either side of the node being removed have their
pointers adjusted.
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Method remove (illustrated by Figure 4.16) is straightforward, though the
code is somewhat longer. First, the variable it is assigned the value being re-
moved, Note that we must separate the element, which is returned to the caller,
from the link object. The following lines then adjust the pointers.
E it = curr.next().element(); // Remember
value if (curr.next().next() != null)
curr.next().next().setPrev(curr); else tail
= curr; // Removed last Object: set tail
curr.setNext(curr.next().next()); // Remove from list

The first line stores the value of the node being removed. The second line
makes the next node’s prev pointer point to the left of the node being removed. If
necessary, tail is updated. Finally, the next field of the node preceding the one
being deleted is adjusted. The final steps of method remove are to update the list
length and to return the value of the deleted element.

The only disadvantage of the doubly linked list as compared to the singly linked
list is the additional space used. The doubly linked list requires two pointers per
node, and so in the implementation presented it requires twice as much overhead
as the singly linked list.

Example 4.1 There is a space-saving technique that can be employed to
eliminate the additional space requirement, though it will complicate the
implementation and be somewhat slower. Thus, the technique is an example
of a space/time tradeoff. It is based on observing that, if we store the sum
of two values, then we can get either value back by subtracting the other.
That is, if we store a + b in variable c, then b = c − a and a = c − b. Of
course, to recover one of the values out of the stored summation, the other
value must be supplied. A pointer to the first node in the list, along with the
value of one of its two link fields, will allow access to all of the remaining
nodes of the list in order. This is because the pointer to the node must be
the same as the value of the following node’s prev pointer, as well as the
previous node’s next pointer. It is possible to move down the list breaking
apart the summed link fields as though you were opening a zipper. Details
for implementing this variation are left as an exercise.

The principle behind this technique is worth remembering, because it
has many applications. The following code fragment will swap the contents
of two variables without using a temporary variable (at the cost of three
arithmetic operations).
a = a + b;
b = a - b; // Now b contains original value of a
a = a - b; // Now a contains original value of b
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A similar effect can be had by using the exclusive-or operator. This fact
is widely used in computer graphics. A region of the computer screen can
be highlighted by XORing the outline of a box around it. XORing the box
outline a second time restores the original contents of the screen.

4.2 Stacks

The stack is a list-like structure in which elements may be inserted or removed
from only one end. While this restriction makes stacks less flexible than lists, it
also makes stacks both efficient (for those operations they can do) and easy to im-
plement. Many applications require only the limited form of insert and remove
operations that stacks provide. In such cases, it is more efficient to use the sim-
pler stack data structure rather than the generic list. For example, the freelist of
Section 4.1.2 is really a stack.

Despite their restrictions, stacks have many uses. Thus, a special vocabulary
for stacks has developed. Accountants used stacks long before the invention of the
computer. They called the stack a “LIFO” list, which stands for “Last-In, First-
Out.” Note that one implication of the LIFO policy is that stacks remove elements
in reverse order of their arrival.

It is traditional to call the accessible element of the stack the top element. El-
ements are not said to be inserted; instead they are pushed onto the stack. When
removed, an element is said to be popped from the stack. Figure 4.17 shows a
sample stack ADT.

As with lists, there are many variations on stack implementation. The two ap-
proaches presented here are array-based and linked stacks, which are analogous
to array-based and linked lists, respectively.

4.2.1 Array-Based Stacks

Figure 4.18 shows a complete implementation for the array-based stack class. As
with the array-based list implementation, listArray must be declared of fixed
size when the stack is created. In the stack constructor, size serves to indicate
this size. Method top acts somewhat like a current position value (because the
“current” position is always at the top of the stack), as well as indicating the number
of elements currently in the stack.

The array-based stack implementation is essentially a simplified version of the
array-based list. The only important design decision to be made is which end of
the array should represent the top of the stack. One choice is to make the top be
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/** Stack ADT */
public interface Stack<E> {

/** Reinitialize the stack. The user is responsible for
reclaiming the storage used by the stack elements. */

public void clear();

/** Push an element onto the top of the stack.
@param it The element being pushed onto the stack. */

public void push(E it);

/** Remove and return the element at the top of the stack.
@return The element at the top of the stack. */

public E pop();

/** @return A copy of the top element. */
public E topValue();

/** @return The number of elements in the stack. */
public int length();

};

Figure 4.17 The Java interface for a stack.

at position 0 in the array. In terms of list functions, all insert and remove
operations would then be on the element in position 0. This implementation is
inefficient, because now every push or pop operation will require that all elements
currently in the stack be shifted one position in the array, for a cost of Θ(n) if there
are n elements. The other choice is have the top element be at position n− 1 when
there are n elements in the stack. In other words, as elements are pushed onto
the stack, they are appended to the tail of the list. Method pop removes the tail
element. In this case, the cost for each push or pop operation is only Θ(1).

For the implementation of Figure 4.18, top is defined to be the array index of
the first free position in the stack. Thus, an empty stack has top set to 0, the first
available free position in the array. (Alternatively, top could have been defined to
be the index for the top element in the stack, rather than the first free position. If
this had been done, the empty list would initialize top as−1.) Methods push and
pop simply place an element into, or remove an element from, the array position
indicated by top. Because top is assumed to be at the first free position, push
first inserts its value into the top position and then increments top, while pop first
decrements top and then removes the top element.



Sec. 4.2 Stacks 127

/** Array-based stack implementation */
class AStack<E> implements Stack<E> {

private static final int defaultSize = 10;

private int maxSize; // Maximum size of stack
private int top; // Index for top Object
private E [] listArray; // Array holding stack

// Constructors
AStack() { this(defaultSize); }
@SuppressWarnings("unchecked") // Generic array allocation
AStack(int size) {

maxSize = size;
top = 0;
listArray = (E[])new Object[size]; // Create listArray

}

public void clear() // Reinitialize stack
{ top = 0; }

public void push(E it) { // Push "it" onto stack
assert top != maxSize : "Stack is full";
listArray[top++] = it;

}

public E pop() { // Pop top element
assert top != 0 : "Stack is empty";
return listArray[--top];

}

public E topValue() { // Return top element
assert top != 0 : "Stack is empty";
return listArray[top-1];

}

public int length() { return top; } // Return length

Figure 4.18 Array-based stack class implementation.
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// Linked stack implementation
class LStack<E> implements Stack<E> {

private Link<E> top; // Pointer to first element
private int size; // Number of elements

//Constructors
public LStack() { top = null; size = 0; }
public LStack(int size) { top = null; size = 0; }

public void clear() { top = null; } // Reinitialize stack

public void push(E it) { // Put "it" on stack
top = new Link<E>(it, top);
size++;

}

public E pop() { // Remove "it" from stack
assert top != null : "Stack is empty";
E it = top.element();
top = top.next();
size--;
return it;

}

public E topValue() { // Return top value
assert top != null : "Stack is empty";
return top.element();

}

public int length() { return size; } // Return length

Figure 4.19 Linked stack class implementation.

4.2.2 Linked Stacks

The linked stack implementation is a simplified version of the linked list imple-
mentation. The freelist of Section 4.1.2 is an example of a linked stack. Elements
are inserted and removed only from the head of the list. The header node is not
used because no special-case code is required for lists of zero or one elements. Fig-
ure 4.19 shows the complete class implementation for the linked stack. The only
data member is top, a pointer to the first (top) link node of the stack. Method
push first modifies the next field of the newly created link node to point to the
top of the stack and then sets top to point to the new link node. Method pop
is also quite simple. The variable temp stores the value of the top node, while
ltemp keeps a link to the top node as it is removed from the stack. The stack is
updated by setting top to point to the next element in the stack. The old top node
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top1 top2

Figure 4.20 Two stacks implemented within in a single array, both growing
toward the middle.

is then returned to free store (or the freelist), and the element value is returned as
the value of the pop method.

4.2.3 Comparison of Array-Based and Linked Stacks

All operations for the array-based and linked stack implementations take constant
time, so from a time efficiency perspective, neither has a significant advantage.
Another basis for comparison is the total space required. The analysis is similar to
that done for list implementations. The array-based stack must declare a fixed-size
array initially, and some of that space is wasted whenever the stack is not full. The
linked stack can shrink and grow but requires the overhead of a link field for every
element.

When multiple stacks are to be implemented, it is possible to take advantage of
the one-way growth of the array-based stack. This can be done by using a single
array to store two stacks. One stack grows inward from each end as illustrated by
Figure 4.20, hopefully leading to less wasted space. However, this only works well
when the space requirements of the two stacks are inversely correlated. In other
words, ideally when one stack grows, the other will shrink. This is particularly
effective when elements are taken from one stack and given to the other. If instead
both stacks grow at the same time, then the free space in the middle of the array
will be exhausted quickly.

4.2.4 Implementing Recursion

Perhaps the most common computer application that uses stacks is not even visible
to its users. This is the implementation of subroutine calls in most programming
language runtime environments. A subroutine call is normally implemented by
placing necessary information about the subroutine (including the return address,
parameters, and local variables) onto a stack. This information is called an ac-
tivation record. Further subroutine calls add to the stack. Each return from a
subroutine pops the top activation record off the stack. Figure 4.21 illustrates the
implementation of the recursive factorial function of Section 2.5 from the runtime
environment’s point of view.
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Figure 4.21 Implementing recursion with a stack. β values indicate the address
of the program instruction to return to after completing the current function call.
On each recursive function call to fact (from Section 2.5), both the return ad-
dress and the current value of n must be saved. Each return from fact pops the
top activation record off the stack.

Consider what happens when we call fact with the value 4. We use β to
indicate the address of the program instruction where the call to fact is made.
Thus, the stack must first store the address β, and the value 4 is passed to fact.
Next, a recursive call to fact is made, this time with value 3. We will name the
program address from which the call is made β1. The address β1, along with the
current value for n (which is 4), is saved on the stack. Function fact is invoked
with input parameter 3.

In similar manner, another recursive call is made with input parameter 2, re-
quiring that the address from which the call is made (say β2) and the current value
for n (which is 3) are stored on the stack. A final recursive call with input parame-
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ter 1 is made, requiring that the stack store the calling address (say β3) and current
value (which is 2).

At this point, we have reached the base case for fact, and so the recursion
begins to unwind. Each return from fact involves popping the stored value for
n from the stack, along with the return address from the function call. The return
value for fact is multiplied by the restored value for n, and the result is returned.

Because an activation record must be created and placed onto the stack for
each subroutine call, making subroutine calls is a relatively expensive operation.
While recursion is often used to make implementation easy and clear, sometimes
you might want to eliminate the overhead imposed by the recursive function calls.
In some cases, such as the factorial function of Section 2.5, recursion can easily be
replaced by iteration.

Example 4.2 As a simple example of replacing recursion with a stack,
consider the following non-recursive version of the factorial function.
static long fact(int n) { // Compute n!
// To fit n! in a long variable, require n < 21
assert (n >= 0) && (n <= 20) : "n out of range";
// Make a stack just big enough
Stack<Integer> S = new AStack<Integer>(n);
while (n > 1) S.push(n--);
long result = 1;
while (S.length() > 0)

result = result * S.pop();
return result;

}

Here, we simply push successively smaller values of n onto the stack un-
til the base case is reached, then repeatedly pop off the stored values and
multiply them into the result.

In practice, an iterative form of the factorial function would be both simpler
and faster than the version shown in Example 4.2. Unfortunately, it is not always
possible to replace recursion with iteration. Recursion, or some imitation of it, is
necessary when implementing algorithms that require multiple branching such as
in the Towers of Hanoi algorithm, or when traversing a binary tree. The Mergesort
and Quicksort algorithms of Chapter 7 are also examples in which recursion is
required. Fortunately, it is always possible to imitate recursion with a stack. Let us
now turn to a non-recursive version of the Towers of Hanoi function, which cannot
be done iteratively.
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Example 4.3 The TOH function shown in Figure 2.2 makes two recursive
calls: one to move n − 1 rings off the bottom ring, and another to move
these n − 1 rings back to the goal pole. We can eliminate the recursion by
using a stack to store a representation of the three operations that TOH must
perform: two recursive calls and a move operation. To do so, we must first
come up with a representation of the various operations, implemented as a
class whose objects will be stored on the stack. Here is such a class.

class TOHobj {
public operation op;
public int num;
public Pole start, goal, temp;

TOHobj(operation o, int n, Pole s, Pole g, Pole t)
{ op = o; num = n; start = s; goal = g; temp = t; }

TOHobj(operation o, Pole s, Pole g) // MOVE
{ op = o; start = s; goal = g; }

}

Class TOHobj stores five values: an operation field (indicating either
a move or a new TOH operation), the number of rings, and the three poles.
Note that the move operation actually needs only to store information about
two poles. Thus, there are two constructors: one to store the state when
imitating a recursive call, and one to store the state for a move operation.
The non-recursive version of TOH can now be presented.
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static void TOH(int n, Pole start,
Pole goal, Pole temp) {

// Make a stack just big enough
Stack<TOHobj> S = new AStack<TOHobj>(2*n+1);
S.push(new TOHobj(operation.TOH, n,

start, goal, temp));
while (S.length() > 0) {

TOHobj it = S.pop(); // Get next task
if (it.op == operation.MOVE) // Do a move

move(it.start, it.goal);
else if (it.num > 0) { // Imitate TOH recursive

// solution (in reverse)
S.push(new TOHobj(operation.TOH, it.num-1,

it.temp, it.goal, it.start));
S.push(new TOHobj(operation.MOVE, it.start,

it.goal)); // A move to do
S.push(new TOHobj(operation.TOH, it.num-1,

it.start, it.temp, it.goal));
}

}
}

We first define an enumerated type called TOHop, with two values
MOVE and TOH, to indicate calls to the move function and recursive calls
to TOH, respectively. Note that an array-based stack is used, because we
know that the stack will need to store exactly 2n + 1 elements. The new
version of TOH begins by placing on the stack a description of the initial
problem of n rings. The rest of the function is simply a while loop that
pops the stack and executes the appropriate operation. In the case of a TOH
operation (for n > 0), we store on the stack representations for the three
operations executed by the recursive version. However, these operations
must be placed on the stack in reverse order, so that they will be popped off
in the correct order.

Some “naturally recursive” applications lend themselves to efficient implemen-
tation with a stack, because the amount of information needed to describe a sub-
problem is small. For example, Section 7.5 discusses a stack-based implementation
for Quicksort.

4.3 Queues

Like the stack, the queue is a list-like structure that provides restricted access to
its elements. Queue elements may only be inserted at the back (called an enqueue
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/** Queue ADT */
public interface Queue<E> {

/** Reinitialize the queue. The user is responsible for
reclaiming the storage used by the queue elements. */

public void clear();

/** Place an element at the rear of the queue.
@param The element being enqueued. */

public void enqueue(E it);

/** Remove and return element at the front of the queue.
@return The element at the front of the queue. */

public E dequeue();

/** @return The front element. */
public E frontValue();

/** @return The number of elements in the queue. */
public int length();

}

Figure 4.22 The Java interface for a queue.

operation) and removed from the front (called a dequeue operation). Queues oper-
ate like standing in line at a movie theater ticket counter.1 If nobody cheats, then
newcomers go to the back of the line. The person at the front of the line is the next
to be served. Thus, queues release their elements in order of arrival. Accountants
have used queues since long before the existence of computers. They call a queue
a “FIFO” list, which stands for “First-In, First-Out.” Figure 4.22 shows a sample
queue ADT. This section presents two implementations for queues: the array-based
queue and the linked queue.

4.3.1 Array-Based Queues

The array-based queue is somewhat tricky to implement effectively. A simple con-
version of the array-based list implementation is not efficient.

Assume that there are n elements in the queue. By analogy to the array-based
list implementation, we could require that all elements of the queue be stored in the
first n positions of the array. If we choose the rear element of the queue to be in
position 0, then dequeue operations require only Θ(1) time because the front ele-
ment of the queue (the one being removed) is the last element in the array. However,

1In Britain, a line of people is called a “queue,” and getting into line to wait for service is called
“queuing up.”
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Figure 4.23 After repeated use, elements in the array-based queue will drift to
the back of the array. (a) The queue after the initial four numbers 20, 5, 12, and 17
have been inserted. (b) The queue after elements 20 and 5 are deleted, following
which 3, 30, and 4 are inserted.

enqueue operations will require Θ(n) time, because the n elements currently in
the queue must each be shifted one position in the array. If instead we chose the
rear element of the queue to be in position n − 1, then an enqueue operation is
equivalent to an append operation on a list. This requires only Θ(1) time. But
now, a dequeue operation requires Θ(n) time, because all of the elements must
be shifted down by one position to retain the property that the remaining n − 1
queue elements reside in the first n− 1 positions of the array.

A far more efficient implementation can be obtained by relaxing the require-
ment that all elements of the queue must be in the first n positions of the array.
We will still require that the queue be stored be in contiguous array positions, but
the contents of the queue will be permitted to drift within the array, as illustrated
by Figure 4.23. Now, both the enqueue and the dequeue operations can be
performed in Θ(1) time because no other elements in the queue need be moved.

This implementation raises a new problem. Assume that the front element of
the queue is initially at position 0, and that elements are added to successively
higher-numbered positions in the array. When elements are removed from the
queue, the front index increases. Over time, the entire queue will drift toward
the higher-numbered positions in the array. Once an element is inserted into the
highest-numbered position in the array, the queue has run out of space. This hap-
pens despite the fact that there might be free positions at the low end of the array
where elements have previously been removed from the queue.

The “drifting queue” problem can be solved by pretending that the array is
circular and so allow the queue to continue directly from the highest-numbered
position in the array to the lowest-numbered position. This is easily implemented
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Figure 4.24 The circular queue with array positions increasing in the clockwise
direction. (a) The queue after the initial four numbers 20, 5, 12, and 17 have been
inserted. (b) The queue after elements 20 and 5 are deleted, following which 3,
30, and 4 are inserted.

through use of the modulus operator (denoted by % in Java). In this way, positions
in the array are numbered from 0 through size−1, and position size−1 is de-
fined to immediately precede position 0 (which is equivalent to position size %
size). Figure 4.24 illustrates this solution.

There remains one more serious, though subtle, problem to the array-based
queue implementation. How can we recognize when the queue is empty or full?
Assume that front stores the array index for the front element in the queue, and
rear stores the array index for the rear element. If both front and rear have the
same position, then with this scheme there must be one element in the queue. Thus,
an empty queue would be recognized by having rear be one less than front (tak-
ing into account the fact that the queue is circular, so position size−1 is actually
considered to be one less than position 0). But what if the queue is completely full?
In other words, what is the situation when a queue with n array positions available
contains n elements? In this case, if the front element is in position 0, then the
rear element is in position size−1. But this means that the value for rear is one
less than the value for front when the circular nature of the queue is taken into
account. In other words, the full queue is indistinguishable from the empty queue!

You might think that the problem is in the assumption about front and rear
being defined to store the array indices of the front and rear elements, respectively,
and that some modification in this definition will allow a solution. Unfortunately,
the problem cannot be remedied by a simple change to the definition for front
and rear, because of the number of conditions or states that the queue can be in.
Ignoring the actual position of the first element, and ignoring the actual values of
the elements stored in the queue, how many different states are there? There can
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be no elements in the queue, one element, two, and so on. At most there can be
n elements in the queue if there are n array positions. This means that there are
n+ 1 different states for the queue (0 through n elements are possible).

If the value of front is fixed, then n+ 1 different values for rear are needed
to distinguish among the n+1 states. However, there are only n possible values for
rear unless we invent a special case for, say, empty queues. This is an example of
the Pigeonhole Principle defined in Exercise 2.29. The Pigeonhole Principle states
that, given n pigeonholes and n + 1 pigeons, when all of the pigeons go into the
holes we can be sure that at least one hole contains more than one pigeon. In similar
manner, we can be sure that two of the n + 1 states are indistinguishable by their
relative values of front and rear. We must seek some other way to distinguish
full from empty queues.

One obvious solution is to keep an explicit count of the number of elements in
the queue, or at least a Boolean variable that indicates whether the queue is empty
or not. Another solution is to make the array be of size n + 1, and only allow
n elements to be stored. Which of these solutions to adopt is purely a matter of the
implementor’s taste in such affairs. My choice is to use an array of size n+ 1.

Figure 4.25 shows an array-based queue implementation. listArray holds
the queue elements, and as usual, the queue constructor allows an optional param-
eter to set the maximum size of the queue. The array as created is actually large
enough to hold one element more than the queue will allow, so that empty queues
can be distinguished from full queues. Method size is used to control the circular
motion of the queue (it is the base for the modulus operator). Method rear is set
to the position of the rear element.

In this implementation, the front of the queue is defined to be toward the
lower numbered positions in the array (in the counter-clockwise direction in Fig-
ure 4.24), and the rear is defined to be toward the higher-numbered positions. Thus,
enqueue increments the rear pointer (modulus size), and dequeue increments
the front pointer. Implementation of all member functions is straightforward.

4.3.2 Linked Queues

The linked queue implementation is a straightforward adaptation of the linked list.
Figure 4.26 shows the linked queue class declaration. Methods front and rear
are pointers to the front and rear queue elements, respectively. We will use a header
link node, which allows for a simpler implementation of the enqueue operation by
avoiding any special cases when the queue is empty. On initialization, the front
and rear pointers will point to the header node, and front will always point to
the header node while rear points to the true last link node in the queue. Method
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// Array-based queue implementation
class AQueue<E> implements Queue<E> {

private static final int defaultSize = 10;
private int maxSize; // Maximum size of queue
private int front; // Index of front element
private int rear; // Index of rear element
private E[] listArray; // Array holding queue elements

// Constructors
AQueue() { this(defaultSize); }
@SuppressWarnings("unchecked") // For generic array
AQueue(int size) {

maxSize = size+1;
rear = 0; front = 1;
listArray = (E[])new Object[maxSize]; // Create listArray

}

public void clear() // Reinitialize
{ rear = 0; front = 1; }

public void enqueue(E it) { // Put "it" in queue
assert ((rear+2) % maxSize) != front : "Queue is full";
rear = (rear+1) % maxSize; // Circular increment
listArray[rear] = it;

}

public E dequeue() { // Take element out of queue
assert length() != 0 : "Queue is empty";
E it = listArray[front];
front = (front+1) % maxSize; // Circular increment
return it;

}

public E frontValue() { // Get front value
assert length() != 0 : "Queue is empty";
return listArray[front];

}

public int length() // Return length
{ return ((rear+maxSize) - front + 1) % maxSize; }

Figure 4.25 An array-based queue implementation.
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// Linked queue implementation
class LQueue<E> implements Queue<E> {

private Link<E> front; // Pointer to front queue node
private Link<E> rear; // Pointer to rear queuenode
int size; // Number of elements in queue

// Constructors
public LQueue() { init(); }
public LQueue(int size) { init(); } // Ignore size

private void init() { // Initialize queue
front = rear = new Link<E>(null);
size = 0;

}

public void clear() { init(); } // Reinitialize queue

public void enqueue(E it) { // Put element on rear
rear.setNext(new Link<E>(it, null));
rear = rear.next();
size++;

}

public E dequeue() { // remove element from front
assert size != 0 : "Queue is empty";
E it = front.next().element(); // Store dequeued value
front.setNext(front.next().next()); // Advance front
if (front.next() == null) rear = front; // Last Object
size--;
return it; // Return Object

}

public E frontValue() { // Get front element
assert size != 0 : "Queue is empty";
return front.next().element();

}

public int length() { return size; } // Return length

Figure 4.26 Linked queue class implementation.
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enqueue places the new element in a link node at the end of the linked list (i.e.,
the node that rear points to) and then advances rear to point to the new link
node. Method dequeue grabs the first element of the list removes it.

4.3.3 Comparison of Array-Based and Linked Queues

All member functions for both the array-based and linked queue implementations
require constant time. The space comparison issues are the same as for the equiva-
lent stack implementations. Unlike the array-based stack implementation, there is
no convenient way to store two queues in the same array, unless items are always
transferred directly from one queue to the other.

4.4 Dictionaries and Comparators

The most common objective of computer programs is to store and retrieve data.
Much of this book is about efficient ways to organize collections of data records
so that they can be stored and retrieved quickly. In this section we describe a
simple interface for such a collection, called a dictionary. The dictionary ADT
provides operations for storing records, finding records, and removing records from
the collection. This ADT gives us a standard basis for comparing various data
structures.

Before we can discuss the interface for a dictionary, we must first define the
concepts of a key and comparable objects. If we want to search for a given record
in a database, how should we describe what we are looking for? A database record
could simply be a number, or it could be quite complicated, such as a payroll record
with many fields of varying types. We do not want to describe what we are looking
for by detailing and matching the entire contents of the record. If we knew every-
thing about the record already, we probably would not need to look for it. Instead,
we typically define what record we want in terms of a key value. For example, if
searching for payroll records, we might wish to search for the record that matches
a particular ID number. In this example the ID number is the search key.

To implement the search function, we require that keys be comparable. At a
minimum, we must be able to take two keys and reliably determine whether they
are equal or not. That is enough to enable a sequential search through a database
of records and find one that matches a given key. However, we typically would
like for the keys to define a total order (see Section 2.1), which means that we
can tell which of two keys is greater than the other. Using key types with total
orderings gives the database implementor the opportunity to organize a collection
of records in a way that makes searching more efficient. An example is storing the
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/** The Dictionary abstract class. */
public interface Dictionary<K, E> {

/** Reinitialize dictionary */
public void clear();

/** Insert a record
@param k The key for the record being inserted.
@param e The record being inserted. */

public void insert(K k, E e);

/** Remove and return a record.
@param k The key of the record to be removed.
@return A maching record. If multiple records match
"k", remove an arbitrary one. Return null if no record
with key "k" exists. */

public E remove(K k);

/** Remove and return an arbitrary record from dictionary.
@return the record removed, or null if none exists. */

public E removeAny();

/** @return A record matching "k" (null if none exists).
If multiple records match, return an arbitrary one. */

public E find(K k);

/** @return the number of records in the dictionary. */
public int size();

};

Figure 4.27 The abstract class definition for a simple dictionary.

records in sorted order in an array, which permits a binary search. Fortunately, in
practice most fields of most records consist of simple data types with natural total
orders. For example, integers, floats, doubles, and character strings all are totally
ordered. Ordering fields that are naturally multi-dimensional, such as a point in two
or three dimensions, present special opportunities if we wish to take advantage of
their multidimensional nature. This problem is addressed in Section 13.3.

Figure 4.27 shows the definition for a simple abstract dictionary class. The
methods insert and find are the heart of the class. Method insert takes a
record and inserts it into the dictionary. Method find takes a key value and returns
some record from the dictionary whose key matches the one provided. If there are
multiple records in the dictionary with that key value, there is no requirement as to
which one is returned.

Method clear simply reinitializes the dictionary. The remove method is
similar to find, except that it also deletes the record returned from the dictionary.
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Once again, if there are multiple records in the dictionary that match the desired
key, there is no requirement as to which one actually is removed and returned.
Method size returns the number of elements in the dictionary.

The remaining Method is removeAny. This is similar to remove, except
that it does not take a key value. Instead, it removes an arbitrary record from the
dictionary, if one exists. The purpose of this method is to allow a user the ability
to iterate over all elements in the dictionary (of course, the dictionary will become
empty in the process). Without the removeAny method, a dictionary user could
not get at a record of the dictionary that he didn’t already know the key value for.
With the removeAny method, the user can process all records in the dictionary as
shown in the following code fragment.

while (dict.size() > 0) {
it = dict.removeAny();
doSomething(it);

}

There are other approaches that might seem more natural for iterating though a
dictionary, such as using a “first” and a “next” function. But not all data structures
that we want to use to implement a dictionary are able to do “first” efficiently. For
example, a hash table implementation cannot efficiently locate the record in the
table with the smallest key value. By using RemoveAny, we have a mechanism
that provides generic access.

Given a database storing records of a particular type, we might want to search
for records in multiple ways. For example, we might want to store payroll records
in one dictionary that allows us to search by ID, and also store those same records
in a second dictionary that allows us to search by name.

Figure 4.28 shows the definition for a payroll record. The Payroll class has
multiple fields, each of which might be used as a search key. Simply by varying
the type for the key, and looking at the appropriate field in each record, we can
define a dictionary whose search key is the ID field, another whose search key is
the name field, and a third whose search key is the address field of the Payroll
class. Figure 4.29 shows an example where Payroll objects are stored in two
separate dictionaries, one using the ID field as the key and the other using the name
field as the key.

A fundamental operation on a dictionary is to find a record that matches a given
key. This raises the issue of how to extract the key from a record. This could
be done by providing to the dictionary some class that knows how to extract the
key from a record. Unfortunately, this solution does not work in all situations,
because there are record types for which it is not possible to write the key extraction
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// A simple payroll entry with ID, name, address fields
class Payroll {

private Integer ID;
private String name;
private String address;

// Constructor
Payroll(int inID, String inname, String inaddr) {

ID = inID;
name = inname;
address = inaddr;

}

// Data member access functions
public Integer getID() { return ID; }
public String getname() { return name; }
public String getaddr() { return address; }

}

Figure 4.28 A payroll record implementation.

// IDdict organizes Payroll records by ID
Dictionary<Integer, Payroll> IDdict =

new UALdictionary<Integer, Payroll>();

// namedict organizes Payroll records by name
Dictionary<String, Payroll> namedict =

new UALdictionary<String, Payroll>();

Payroll foo1 = new Payroll(5, "Joe", "Anytown");
Payroll foo2 = new Payroll(10, "John", "Mytown");

IDdict.insert(foo1.getID(), foo1);
IDdict.insert(foo2.getID(), foo2);
namedict.insert(foo1.getname(), foo1);
namedict.insert(foo2.getname(), foo2);

Payroll findfoo1 = IDdict.find(5);
Payroll findfoo2 = namedict.find("John");

Figure 4.29 A dictionary search example. Here, payroll records are stored in
two dictionaries, one organized by ID and the other organized by name. Both
dictionaries are implemented with an unsorted array-based list.
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// Container for a key-value pair
class KVpair<K, E> {

private K k;
private E e;

// Constructors
KVpair()

{ k = null; e = null; }
KVpair(K kval, E eval)

{ k = kval; e = eval; }

// Data member access functions
public K key() { return k; }
public E value() { return e; }

}

Figure 4.30 Implementation for a class representing a key-value pair.

method.2 The fundamental issue is that the key value for a record is not an intrinsic
property of the record’s class, or of any field within the class. The key for a record
is actually a property of the context in which the record is used.

An alternative is to explicitly store the key associated with a given record, as
a separate field in the dictionary. That is, each entry in the dictionary will contain
both a record and its associated key. Such entries will be known as key-value pairs.
It is typical that storing the key explicitly duplicates some field in the record. How-
ever, keys tend to be much smaller than records, so this additional space overhead
will not be great. A simple class for representing key-value pairs is shown in Fig-
ure 4.30. The insert method of the dictionary class supports the key-value pair
implementation because it takes two parameters, a record and its associated key for
that dictionary.

Now that we have defined the dictionary ADT and settled on the design ap-
proach of storing key-value pairs for our dictionary entries, we are ready to consider
ways to implement it. Two possibilities would be to use an array-based or linked
list. Figure 4.31 shows an implementation for the dictionary using an (unsorted)
array-based list.

2One example of such a situation occurs when we have a collection of records that describe books
in a library. One of the fields for such a record might be a list of subject keywords, where the typical
record stores a few keywords. Our dictionary might be implemented as a list of records sorted by
keyword. If a book contains three keywords, it would appear three times on the list, once for each
associated keyword. However, given the record, there is no simple way to determine which keyword
on the keyword list triggered this appearance of the record. Thus, we cannot write a function that
extracts the key from such a record.
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/** Dictionary implemented by unsorted array-based list. */
class UALdictionary<K, E> implements Dictionary<K, E> {

private static final int defaultSize = 10; // Default size
private AList<KVpair<K,E>> list; // To store dictionary

// Constructors
UALdictionary() { this(defaultSize); }
UALdictionary(int sz)

{ list = new AList<KVpair<K, E>>(sz); }

public void clear() { list.clear(); } // Reinitialize

/** Insert an element: append to list */
public void insert(K k, E e) {

KVpair<K,E> temp = new KVpair<K,E>(k, e);
list.append(temp);

}

/** Use sequential search to find the element to remove */
public E remove(K k) {

E temp = find(k);
if (temp != null) list.remove();
return temp;

}

/** Remove the last element */
public E removeAny() {

if (size() != 0) {
list.moveToEnd();
list.prev();
KVpair<K,E> e = list.remove();
return e.value();

}
else return null;

}

// Find "k" using sequential search
public E find(K k) {

for(list.moveToStart(); list.currPos() < list.length();
list.next()) {

KVpair<K,E> temp = list.getValue();
if (k == temp.key())

return temp.value();
}
return null; // "k" does not appear in dictionary

}

Figure 4.31 A dictionary implemented with an unsorted array-based list.
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public int size() // Return list size
{ return list.length(); }

}

Figure 4.31 (continued)

Examining class UALdict (UAL stands for “unsorted array-based list), we can
easily see that insert is a constant time operation, because it simply inserts the
new record at the end of the list. However, find, and remove both require Θ(n)
time in the average and worst cases, because we need to do a sequential search.
Method remove in particular must touch every record in the list, because once the
desired record is found, the remaining records must be shifted down in the list to
fill the gap. Method removeAny removes the last record from the list, so this is a
constant-time operation.

As an alternative, we could implement the dictionary using a linked list. The
implementation would be quite similar to that shown in Figure 4.31, and the cost
of the functions should be the same asymptotically.

Another alternative would be to implement the dictionary with a sorted list. The
advantage of this approach would be that we might be able to speed up the find
operation by using a binary search. To do so, first we must define a variation on
the List ADT to support sorted lists. A sorted list is somewhat different from
an unsorted list in that it cannot permit the user to control where elements get
inserted. Thus, the insert method must be quite different in a sorted list than in
an unsorted list. Likewise, the user cannot be permitted to append elements onto
the list. For these reasons, a sorted list cannot be implemented with straightforward
inheritance from the List ADT.

The cost for find in a sorted list is Θ(log n) for a list of length n. This is a
great improvement over the cost of find in an unsorted list. Unfortunately, the
cost of insert changes from constant time in the unsorted list to Θ(n) time in
the sorted list. Whether the sorted list implementation for the dictionary ADT is
more or less efficient than the unsorted list implementation depends on the relative
number of insert and find operations to be performed. If many more find
operations than insert operations are used, then it might be worth using a sorted
list to implement the dictionary. In both cases, remove requires Θ(n) time in the
worst and average cases. Even if we used binary search to cut down on the time to
find the record prior to removal, we would still need to shift down the remaining
records in the list to fill the gap left by the remove operation.
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4.5 Further Reading

For more discussion on choice of functions used to define the List ADT, see the
work of the Reusable Software Research Group from Ohio State. Their definition
for the List ADT can be found in [SWH93]. More information about designing
such classes can be found in [SW94].

4.6 Exercises

4.1 Assume a list has the following configuration:

〈 | 2, 23, 15, 5, 9 〉.

Write a series of Java statements using the List ADT of Figure 4.1 to delete
the element with value 15.

4.2 Show the list configuration resulting from each series of list operations using
the List ADT of Figure 4.1. Assume that lists L1 and L2 are empty at the
beginning of each series. Show where the current position is in the list.

(a) L1.append(10);
L1.append(20);
L1.append(15);

(b) L2.append(10);
L2.append(20);
L2.append(15);
L2.moveToStart();
L2.insert(39);
L2.next();
L2.insert(12);

4.3 Write a series of Java statements that uses the List ADT of Figure 4.1 to
create a list capable of holding twenty elements and which actually stores the
list with the following configuration:

〈 2, 23 | 15, 5, 9 〉.

4.4 Using the list ADT of Figure 4.1, write a function to interchange the current
element and the one following it.
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4.5 In the linked list implementation presented in Section 4.1.2, the current po-
sition is implemented using a pointer to the element ahead of the logical
current node. The more “natural” approach might seem to be to have curr
point directly to the node containing the current element. However, if this
was done, then the pointer of the node preceeding the current one cannot be
updated properly because there is no access to this node from curr. An
alternative is to add a new node after the current element, copy the value of
the current element to this new node, and then insert the new value into the
old current node.

(a) What happens if curr is at the end of the list already? Is there still a
way to make this work? Is the resulting code simpler or more complex
than the implementation of Section 4.1.2?

(b) Will deletion always work in constant time if curr points directly to
the current node?

4.6 Add to the LList class implementation a member function to reverse the
order of the elements on the list. Your algorithm should run in Θ(n) time for
a list of n elements.

4.7 Write a function to merge two linked lists. The input lists have their elements
in sorted order, from smallest to highest. The output list should also be sorted
from highest to lowest. Your algorithm should run in linear time on the length
of the output list.

4.8 A circular linked list is one in which the next field for the last link node
of the list points to the first link node of the list. This can be useful when
you wish to have a relative positioning for elements, but no concept of an
absolute first or last position.

(a) Modify the code of Figure 4.8 to implement circular singly linked lists.
(b) Modify the code of Figure 4.14 to implement circular doubly linked

lists.
4.9 Section 4.1.3 states “the space required by the array-based list implementa-

tion is Ω(n), but can be greater.” Explain why this is so.
4.10 Section 4.1.3 presents an equation for determining the break-even point for

the space requirements of two implementations of lists. The variables are D,
E, P , and n. What are the dimensional units for each variable? Show that
both sides of the equation balance in terms of their dimensional units.

4.11 Use the space equation of Section 4.1.3 to determine the break-even point for
an array-based list and linked list implementation for lists when the sizes for
the data field, a pointer, and the array-based list’s array are as specified.
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(a) The data field is eight bytes, a pointer is four bytes, and the array holds
twenty elements.

(b) The data field is two bytes, a pointer is four bytes, and the array holds
thirty elements.

(c) The data field is one byte, a pointer is four bytes, and the array holds
thirty elements.

(d) The data field is 32 bytes, a pointer is four bytes, and the array holds
forty elements.

4.12 Determine the size of an int variable, a double variable, and a pointer on
your computer.

(a) Calculate the break-even point, as a function of n, beyond which the
array-based list is more space efficient than the linked list for lists
whose elements are of type int.

(b) Calculate the break-even point, as a function of n, beyond which the
array-based list is more space efficient than the linked list for lists
whose elements are of type double.

4.13 Modify the code of Figure 4.18 to implement two stacks sharing the same
array, as shown in Figure 4.20.

4.14 Modify the array-based queue definition of Figure 4.25 to use a separate
Boolean member to keep track of whether the queue is empty, rather than
require that one array position remain empty.

4.15 A palindrome is a string that reads the same forwards as backwards. Using
only a fixed number of stacks and queues, the stack and queue ADT func-
tions, and a fixed number of int and char variables, write an algorithm to
determine if a string is a palindrome. Assume that the string is read from
standard input one character at a time. The algorithm should output true or
false as appropriate.

4.16 Reimplement function fibr from Exercise 2.11, using a stack to replace the
recursive call as described in Section 4.2.4.

4.17 Write a recursive algorithm to compute the value of the recurrence relation

T(n) = T(dn/2e) + T(bn/2c) + n; T(1) = 1.

Then, rewrite your algorithm to simulate the recursive calls with a stack.
4.18 Let Q be a non-empty queue, and let S be an empty stack. Using only the

stack and queue ADT functions and a single element variable X , write an
algorithm to reverse the order of the elements in Q.
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4.19 A common problem for compilers and text editors is to determine if the
parentheses (or other brackets) in a string are balanced and properly nested.
For example, the string “((())())()” contains properly nested pairs of paren-
theses, but the string “)()(” does not, and the string “())” does not contain
properly matching parentheses.

(a) Give an algorithm that returns true if a string contains properly nested
and balanced parentheses, and false otherwise. Use a stack to keep
track of the number of left parentheses seen so far. Hint: At no time
while scanning a legal string from left to right will you have encoun-
tered more right parentheses than left parentheses.

(b) Give an algorithm that returns the position in the string of the first of-
fending parenthesis if the string is not properly nested and balanced.
That is, if an excess right parenthesis is found, return its position; if
there are too many left parentheses, return the position of the first ex-
cess left parenthesis. Return −1 if the string is properly balanced and
nested. Use a stack to keep track of the number and positions of left
parentheses seen so far.

4.20 Imagine that you are designing an application where you need to perform
the operations Insert, Delete Maximum, and Delete Minimum. For
this application, the cost of inserting is not important, because it can be done
off-line prior to startup of the time-critical section, but the performance of
the two deletion operations are critical. Repeated deletions of either kind
must work as fast as possible. Suggest a data structure that can support this
application, and justify your suggestion. What is the time complexity for
each of the three key operations?

4.21 Write a function that reverses the order of an array of n items.

4.7 Projects

4.1 A deque (pronounced “deck”) is like a queue, except that items may be added
and removed from both the front and the rear. Write either an array-based or
linked implementation for the deque.

4.2 One solution to the problem of running out of space for an array-based list
implementation is to replace the array with a larger array whenever the origi-
nal array overflows. A good rule that leads to an implementation that is both
space and time efficient is to double the current size of the array when there
is an overflow. Reimplement the array-based List class of Figure 4.2 to
support this array-doubling rule.
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4.3 Use singly linked lists to implement integers of unlimited size. Each node of
the list should store one digit of the integer. You should implement addition,
subtraction, multiplication, and exponentiation operations. Limit exponents
to be positive integers. What is the asymptotic running time for each of your
operations, expressed in terms of the number of digits for the two operands
of each function?

4.4 Implement doubly linked lists by storing the sum of the next and prev
pointers in a single pointer variable as described in Example 4.1.

4.5 Implement a city database using unordered lists. Each database record con-
tains the name of the city (a string of arbitrary length) and the coordinates
of the city expressed as integer x and y coordinates. Your database should
allow records to be inserted, deleted by name or coordinate, and searched
by name or coordinate. Another operation that should be supported is to
print all records within a given distance of a specified point. Implement the
database using an array-based list implementation, and then a linked list im-
plementation. Collect running time statistics for each operation in both im-
plementations. What are your conclusions about the relative advantages and
disadvantages of the two implementations? Would storing records on the
list in alphabetical order by city name speed any of the operations? Would
keeping the list in alphabetical order slow any of the operations?

4.6 Modify the code of Figure 4.18 to support storing variable-length strings of
at most 255 characters. The stack array should have type char. A string is
represented by a series of characters (one character per stack element), with
the length of the string stored in the stack element immediately above the
string itself, as illustrated by Figure 4.32. The push operation would store an
element requiring i storage units in the i positions beginning with the current
value of top and store the size in the position i storage units above top.
The value of top would then be reset above the newly inserted element. The
pop operation need only look at the size value stored in position top−1 and
then pop off the appropriate number of units. You may store the string on the
stack in reverse order if you prefer, provided that when it is popped from the
stack, it is returned in its proper order.

4.7 Implement a collection of freelists for variable-length strings, as described
at the end of Section 4.1.2. For each such freelist, you will need an access
function to get it if it exists, and implement it if it does not. A major de-
sign consideration is how to organize the collection of freelists, which are
distinguished by the length of the strings. Essentially, what is needed is a
dictionary of freelists, organized by string lengths.
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top = 10

‘a’ ‘b’ ‘c’ 3 ‘h’ ‘e’ ‘l’ ‘o’ 5

0 1 2 3 4 5 6 7 8 9 10

‘l’

Figure 4.32 An array-based stack storing variable-length strings. Each position
stores either one character or the length of the string immediately to the left of it
in the stack.

4.8 Define an ADT for a bag (see Section 2.1) and create an array-based imple-
mentation for bags. Be sure that your bag ADT does not rely in any way
on knowing or controlling the position of an element. Then, implement the
dictionary ADT of Figure 4.27 using your bag implementation.

4.9 Implement the dictionary ADT of Figure 4.27 using an unsorted linked list as
defined by class LList in Figure 4.8. Make the implementation as efficient
as you can, given the restriction that your implementation must use the un-
sorted linked list and its access operations to implement the dictionary. State
the asymptotic time requirements for each function member of the dictionary
ADT under your implementation.

4.10 Implement the dictionary ADT of Figure 4.27 based on stacks. Your imple-
mentation should declare and use two stacks.

4.11 Implement the dictionary ADT of Figure 4.27 based on queues. Your imple-
mentation should declare and use two queues.


